Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 9(12): 4260-4277, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33367332

RESUMO

Bovine milk-derived exosomes have recently emerged as a promising nano-vehicle for the encapsulation and delivery of macromolecular biotherapeutics. Here we engineer high purity bovine milk exosomes (mExo) with modular surface tunability for oral delivery of small interfering RNA (siRNA). We utilize a low-cost enrichment method combining casein chelation with differential ultracentrifugation followed by size exclusion chromatography, yielding mExo of high concentration and purity. Using in vitro models, we demonstrate that negatively charged hydrophobic mExos can penetrate multiple biological barriers to oral drug delivery. A hydrophilic polyethylene glycol (PEG) coating was introduced on the mExo surface via passive, stable hydrophobic insertion of a conjugated lipid tail, which significantly reduced mExo degradation in acidic gastric environment and enhanced their permeability through mucin by over 3× compared to unmodified mExo. Both mExo and PEG-mExo exhibited high uptake by intestinal epithelial cells and mediated functional intracellular delivery of siRNA, thereby suppressing the expression of the target green fluorescence protein (GFP) gene by up to 70%. We also show that cationic chemical transfection is significantly more efficient in loading siRNA into mExo than electroporation. The simplicity of isolating high purity mExo in high concentrations and equipping them with tunable surface properties, demonstrated here, paves way for the development of mExo as an effective, scalable platform technology for oral drug delivery of siRNA.


Assuntos
Exossomos , Animais , Bovinos , Sistemas de Liberação de Medicamentos , Leite , Muco , Polietilenoglicóis , RNA Interferente Pequeno
2.
Mol Metab ; 24: 98-107, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30956117

RESUMO

OBJECTIVE: Genome wide association studies (GWAS) for type 2 diabetes (T2D) have identified genetic loci that often localise in non-coding regions of the genome, suggesting gene regulation effects. We combined genetic and transcriptomic analysis from human islets obtained from brain-dead organ donors or surgical patients to detect expression quantitative trait loci (eQTLs) and shed light into the regulatory mechanisms of these genes. METHODS: Pancreatic islets were isolated either by laser capture microdissection (LCM) from surgical specimens of 103 metabolically phenotyped pancreatectomized patients (PPP) or by collagenase digestion of pancreas from 100 brain-dead organ donors (OD). Genotyping (> 8.7 million single nucleotide polymorphisms) and expression (> 47,000 transcripts and splice variants) analyses were combined to generate cis-eQTLs. RESULTS: After applying genome-wide false discovery rate significance thresholds, we identified 1,173 and 1,021 eQTLs in samples of OD and PPP, respectively. Among the strongest eQTLs shared between OD and PPP were CHURC1 (OD p-value=1.71 × 10-24; PPP p-value = 3.64 × 10-24) and PSPH (OD p-value = 3.92 × 10-26; PPP p-value = 3.64 × 10-24). We identified eQTLs in linkage-disequilibrium with GWAS loci T2D and associated traits, including TTLL6, MLX and KIF9 loci, which do not implicate the nearest gene. We found in the PPP datasets 11 eQTL genes, which were differentially expressed in T2D and two genes (CYP4V2 and TSEN2) associated with HbA1c but none in the OD samples. CONCLUSIONS: eQTL analysis of LCM islets from PPP led us to identify novel genes which had not been previously linked to islet biology and T2D. The understanding gained from eQTL approaches, especially using surgical samples of living patients, provides a more accurate 3-dimensional representation than those from genetic studies alone.


Assuntos
Diabetes Mellitus Tipo 2/genética , Ilhotas Pancreáticas/metabolismo , Locos de Características Quantitativas , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Família 4 do Citocromo P450/genética , Diabetes Mellitus Tipo 2/patologia , Humanos , Cinesinas/genética , Microdissecção e Captura a Laser , Proteínas de Membrana/genética , Peptídeo Sintases/genética , Polimorfismo de Nucleotídeo Único
3.
Diabetes Obes Metab ; 21(7): 1606-1614, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30848033

RESUMO

AIM: To determine if a 4-week course of 14 mg weekly GLP-1 agonist LY2428757 combined with 3 mg or 2 mg daily gastrin analogue TT223 (LY+TT223) results in long-term glycaemic changes. MATERIALS AND METHODS: Patients with in adequately-controlled type 2 diabetes mellitus ±metformin (N=151) were randomized to a 4-week course of LY+TT223 (3 mg), LY+TT223 (2 mg), LY+TT223 placebo (LY-only) or LY placebo+TT223 placebo (placebo). The primary objective was change in HbA1c from baseline to 5 month safter completion of therapy (i.e. at 6 months) and safety and tolerability with LY+TT223 versus LY-only. RESULTS: LY groups showed HbA1c reductions during the active treatment phase. These did not persist during follow-up phase. Combining TT223 with LY did not result in additional glycaemic effects during treatment or follow-up. At 6 months, LSM ± SE for change in HbA1c from baseline was: LY+TT223 (3 mg): -0.1 ± 0.2%; LY+TT223 (2 mg): 0.1 ± 0.2%; LY-only: -0.2 ± 0.2%; placebo: 0.04 ± 0.2%. Secondary analyses were consistent with primary results. LY+TT223 was not superior to LY for other time points or end points, including insulin secretory response to mixed meal tolerance tests. The most common adverse events (nausea and vomiting) were more frequent with LY+TT223 versus LY-only. The safety profile was consistent with previous findings. CONCLUSION: GLP-1+gastrin combination therapy did not improve glycaemic control versus GLP-1 alone.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Gastrinas/química , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes , Adulto , Peso Corporal/efeitos dos fármacos , Quimioterapia Combinada , Feminino , Hemoglobinas Glicadas/análise , Humanos , Masculino , Pessoa de Meia-Idade
4.
Mol Metab ; 18: 3-14, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30473097

RESUMO

OBJECTIVE: A novel dual GIP and GLP-1 receptor agonist, LY3298176, was developed to determine whether the metabolic action of GIP adds to the established clinical benefits of selective GLP-1 receptor agonists in type 2 diabetes mellitus (T2DM). METHODS: LY3298176 is a fatty acid modified peptide with dual GIP and GLP-1 receptor agonist activity designed for once-weekly subcutaneous administration. LY3298176 was characterised in vitro, using signaling and functional assays in cell lines expressing recombinant or endogenous incretin receptors, and in vivo using body weight, food intake, insulin secretion and glycemic profiles in mice. A Phase 1, randomised, placebo-controlled, double-blind study was comprised of three parts: a single-ascending dose (SAD; doses 0.25-8 mg) and 4-week multiple-ascending dose (MAD; doses 0.5-10 mg) studies in healthy subjects (HS), followed by a 4-week multiple-dose Phase 1 b proof-of-concept (POC; doses 0.5-15 mg) in patients with T2DM (ClinicalTrials.gov no. NCT02759107). Doses higher than 5 mg were attained by titration, dulaglutide (DU) was used as a positive control. The primary objective was to investigate safety and tolerability of LY3298176. RESULTS: LY3298176 activated both GIP and GLP-1 receptor signaling in vitro and showed glucose-dependent insulin secretion and improved glucose tolerance by acting on both GIP and GLP-1 receptors in mice. With chronic administration to mice, LY3298176 potently decreased body weight and food intake; these effects were significantly greater than the effects of a GLP-1 receptor agonist. A total of 142 human subjects received at least 1 dose of LY3298176, dulaglutide, or placebo. The PK profile of LY3298176 was investigated over a wide dose range (0.25-15 mg) and supports once-weekly administration. In the Phase 1 b trial of diabetic subjects, LY3298176 doses of 10 mg and 15 mg significantly reduced fasting serum glucose compared to placebo (least square mean [LSM] difference [95% CI]: -49.12 mg/dL [-78.14, -20.12] and -43.15 mg/dL [-73.06, -13.21], respectively). Reductions in body weight were significantly greater with the LY3298176 1.5 mg, 4.5 mg and 10 mg doses versus placebo in MAD HS (LSM difference [95% CI]: -1.75 kg [-3.38, -0.12], -5.09 kg [-6.72, -3.46] and -4.61 kg [-6.21, -3.01], respectively) and doses of 10 mg and 15 mg had a relevant effect in T2DM patients (LSM difference [95% CI]: -2.62 kg [-3.79, -1.45] and -2.07 kg [-3.25, -0.88], respectively. The most frequent side effects reported with LY3298176 were gastrointestinal (vomiting, nausea, decreased appetite, diarrhoea, and abdominal distension) in both HS and patients with T2DM; all were dose-dependent and considered mild to moderate in severity. CONCLUSIONS: Based on these results, the pharmacology of LY3298176 translates from preclinical to clinical studies. LY3298176 has the potential to deliver clinically meaningful improvement in glycaemic control and body weight. The data warrant further clinical evaluation of LY3298176 for the treatment of T2DM and potentially obesity.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Polipeptídeo Inibidor Gástrico/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes/uso terapêutico , Incretinas/uso terapêutico , Receptores dos Hormônios Gastrointestinais/agonistas , Adulto , Animais , Apetite/efeitos dos fármacos , Glicemia/metabolismo , Peso Corporal , Diarreia/etiologia , Feminino , Polipeptídeo Inibidor Gástrico/efeitos adversos , Polipeptídeo Inibidor Gástrico/farmacologia , Humanos , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/farmacologia , Incretinas/efeitos adversos , Incretinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Vômito/etiologia
5.
Diabetologia ; 61(10): 2215-2224, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30046852

RESUMO

AIMS/HYPOTHESIS: Islet amyloid deposits contribute to beta cell dysfunction and death in most individuals with type 2 diabetes but non-invasive methods to determine the presence of these pathological protein aggregates are currently not available. Therefore, we examined whether florbetapir, a radiopharmaceutical agent used for detection of amyloid-ß deposits in the brain, also allows identification of islet amyloid in the pancreas. METHODS: Saturation binding assays were used to determine the affinity of florbetapir for human islet amyloid polypeptide (hIAPP) aggregates in vitro. Islet amyloid-prone transgenic mice that express hIAPP in their beta cells and amyloid-free non-transgenic control mice were used to examine the ability of florbetapir to detect islet amyloid deposits in vitro, in vivo and ex vivo. Mice or mouse pancreases were subjected to autoradiographic, histochemical and/or positron emission tomography (PET) analyses to assess the utility of florbetapir in identifying islet amyloid. RESULTS: In vitro, florbetapir bound synthetic hIAPP fibrils with a dissociation constant of 7.9 nmol/l. Additionally, florbetapir bound preferentially to amyloid-containing hIAPP transgenic vs amyloid-free non-transgenic mouse pancreas sections in vitro, as determined by autoradiography (16,475 ± 5581 vs 5762 ± 575 density/unit area, p < 0.05). In hIAPP transgenic and non-transgenic mice fed a high-fat diet for 1 year, intravenous administration of florbetapir followed by PET scanning showed that the florbetapir signal was significantly higher in amyloid-laden hIAPP transgenic vs amyloid-free non-transgenic pancreases in vivo during the first 5 min of the scan (36.83 ± 2.22 vs 29.34 ± 2.03 standardised uptake value × min, p < 0.05). Following PET, pancreases were excised and florbetapir uptake was determined ex vivo by γ counting. Pancreatic uptake of florbetapir was significantly correlated with the degree of islet amyloid deposition, the latter assessed by histochemistry (r = 0.74, p < 0.001). CONCLUSIONS/INTERPRETATION: Florbetapir binds to islet amyloid deposits in a specific and quantitative manner. In the future, florbetapir may be useful as a non-invasive tool to identify islet amyloid deposits in humans.


Assuntos
Amiloide/química , Compostos de Anilina/farmacologia , Etilenoglicóis/farmacologia , Ilhotas Pancreáticas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Animais , Composição Corporal , Calorimetria Indireta , Radioisótopos de Flúor/farmacologia , Regulação da Expressão Gênica , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Hipotálamo/metabolismo , Insulina/metabolismo , Resistência à Insulina , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reação em Cadeia da Polimerase , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Transdução de Sinais
6.
FASEB J ; : fj201800150RR, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29812970

RESUMO

Loss of functional islet ß-cell mass through cellular death or dedifferentiation is thought to lead to dysglycemia during the progression from obesity to type 2 diabetes. To assess these processes in a mouse model of obesity, we performed measures of circulating cell-free differentially methylated insulin II ( Ins2) DNA as a biomarker of ß-cell death and aldehyde dehydrogenase 1 family member A3 (ALDH1A3) and forkhead box 01 (Foxo1) immunostaining as markers of ß-cell dedifferentiation. Eight-week-old, C57BL/6J mice were fed a low-fat diet (LFD; 10% kcal from fat) or a high-fat diet (HFD; 60% kcal from fat) and were followed longitudinally for up to 13 wk to measure glycemic control and ß-cell mass, death, and dedifferentiation. Compared with LFD controls, ß-cell mass increased during the feeding period in HFD animals, and statistically greater ß-cell death (unmethylated Ins2) was detectable at 2 and 6 wk after diet initiation. Those times correspond to periods when significant step increases in fasting glucose and glucose intolerance, respectively, were detected. ALDH1A3 and Foxo1 immunostaining of the pancreas revealed evidence of ß-cell dedifferentiation by 13 wk when fed an HFD, but not in LFD controls. In conclusion, early episodic ß-cell death may be a feature of cellular turnover correlated with changes in glycemia during ß-cell mass accrual in obesity, whereas ß-cell dedifferentiation may be a feature seen later in established disease.-Tersey, S. A., Levasseur, E. M., Syed, F., Farb, T. B., Orr, K. S., Nelson, J. B., Shaw, J. L., Bokvist, K., Mather, K. J., Mirmira, R. G. Episodic ß-cell death and dedifferentiation during diet-induced obesity and dysglycemia in male mice.

7.
Diabetologia ; 61(3): 641-657, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29185012

RESUMO

AIMS/HYPOTHESIS: Pancreatic islet beta cell failure causes type 2 diabetes in humans. To identify transcriptomic changes in type 2 diabetic islets, the Innovative Medicines Initiative for Diabetes: Improving beta-cell function and identification of diagnostic biomarkers for treatment monitoring in Diabetes (IMIDIA) consortium ( www.imidia.org ) established a comprehensive, unique multicentre biobank of human islets and pancreas tissues from organ donors and metabolically phenotyped pancreatectomised patients (PPP). METHODS: Affymetrix microarrays were used to assess the islet transcriptome of islets isolated either by enzymatic digestion from 103 organ donors (OD), including 84 non-diabetic and 19 type 2 diabetic individuals, or by laser capture microdissection (LCM) from surgical specimens of 103 PPP, including 32 non-diabetic, 36 with type 2 diabetes, 15 with impaired glucose tolerance (IGT) and 20 with recent-onset diabetes (<1 year), conceivably secondary to the pancreatic disorder leading to surgery (type 3c diabetes). Bioinformatics tools were used to (1) compare the islet transcriptome of type 2 diabetic vs non-diabetic OD and PPP as well as vs IGT and type 3c diabetes within the PPP group; and (2) identify transcription factors driving gene co-expression modules correlated with insulin secretion ex vivo and glucose tolerance in vivo. Selected genes of interest were validated for their expression and function in beta cells. RESULTS: Comparative transcriptomic analysis identified 19 genes differentially expressed (false discovery rate ≤0.05, fold change ≥1.5) in type 2 diabetic vs non-diabetic islets from OD and PPP. Nine out of these 19 dysregulated genes were not previously reported to be dysregulated in type 2 diabetic islets. Signature genes included TMEM37, which inhibited Ca2+-influx and insulin secretion in beta cells, and ARG2 and PPP1R1A, which promoted insulin secretion. Systems biology approaches identified HNF1A, PDX1 and REST as drivers of gene co-expression modules correlated with impaired insulin secretion or glucose tolerance, and 14 out of 19 differentially expressed type 2 diabetic islet signature genes were enriched in these modules. None of these signature genes was significantly dysregulated in islets of PPP with impaired glucose tolerance or type 3c diabetes. CONCLUSIONS/INTERPRETATION: These studies enabled the stringent definition of a novel transcriptomic signature of type 2 diabetic islets, regardless of islet source and isolation procedure. Lack of this signature in islets from PPP with IGT or type 3c diabetes indicates differences possibly due to peculiarities of these hyperglycaemic conditions and/or a role for duration and severity of hyperglycaemia. Alternatively, these transcriptomic changes capture, but may not precede, beta cell failure.


Assuntos
Bancos de Espécimes Biológicos , Diabetes Mellitus Tipo 2/metabolismo , Biologia de Sistemas/métodos , Doadores de Tecidos , Transcriptoma/genética , Idoso , Idoso de 80 Anos ou mais , Biologia Computacional , Feminino , Humanos , Masculino , Pancreatectomia
8.
Endocrinology ; 158(11): 3859-3873, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28938487

RESUMO

Incretin and insulin responses to nutrient loads are suppressed in persons with diabetes, resulting in decreased glycemic control. Agents including sulfonylureas and dipeptidyl peptidase-4 inhibitors (DPP4i) partially reverse these effects and provide therapeutic benefit; however, their modes of action limit efficacy. Because somatostatin (SST) has been shown to suppress insulin and glucagonlike peptide-1 (GLP-1) secretion through the Gi-coupled SST receptor 5 (SSTR5) isoform in vitro, antagonism of SSTR5 may improve glycemic control via intervention in both pathways. Here, we show that a potent and selective SSTR5 antagonist reverses the blunting effects of SST on insulin secretion from isolated human islets, and demonstrate that SSTR5 antagonism affords increased levels of systemic GLP-1 in vivo. Knocking out Sstr5 in mice provided a similar increase in systemic GLP-1 levels, which were not increased further by treatment with the antagonist. Treatment of mice with the SSTR5 antagonist in combination with a DPP4i resulted in increases in systemic GLP-1 levels that were more than additive and resulted in greater glycemic control compared with either agent alone. In isolated human islets, the SSTR5 antagonist completely reversed the inhibitory effect of exogenous SST-14 on insulin secretion. Taken together, these data suggest that SSTR5 antagonism should increase circulating GLP-1 levels and stimulate insulin secretion (directly and via GLP-1) in humans, improving glycemic control in patients with diabetes.


Assuntos
Benzoatos/farmacologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Receptores de Somatostatina/antagonistas & inibidores , Compostos de Espiro/farmacologia , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Células HEK293 , Humanos , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Receptores de Somatostatina/genética , Via Secretória/efeitos dos fármacos
9.
Free Radic Biol Med ; 99: 557-571, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27658743

RESUMO

Impaired insulin signaling and the associated insulin-resistance in liver, adipose tissue, and skeletal muscle, represents a hallmark of the pathogenesis of type 2-diabetes-mellitus. Here we show that in the liver of db/db mice, a murine model of obesity, type 2 diabetes, and dyslipidemia, the elevated activities of mitogen-activated protein kinases (MAPK; ERK1/2 and p38MAPK), and Akt/PKB are abolished by rosiglitazone-treatment, which normalizes blood glucose in db/db mice. This is unequivocal evidence of a functional link between the activation of the MAPK specific inflammatory-pathway and high-blood sugar. A similar reduction in ERK1/2, p38MAPK, and Akt activities but without affecting blood-glucose was observed in the liver of db/db mice treated with a molecule that mimics the action of thioredoxin, called thioredoxin-mimetic peptide (TXM). N-Acetyl-Cys-Pro-Cys-amide (TXM-CB3) is a free radical scavenger, a reducing and denitrosylating reagent that protects the cells from early death induced by inflammatory pathways. TXM-CB3 also lowered MAPK signaling activated by the disruption of the thioredoxin-reductase-thioredoxin (Trx-TrxR) redox-system and restored Akt activity in rat hepatoma FAO cells. Similarly, two other TXM-peptides, N-Acetyl-Cys-Met-Lys-Cys-amide (TXM-CB13; DY70), and N-Acetyl-Cys-γGlu-Cys-Cys-amide (TXM-CB16; DY71), lowered insulin- and oxidative stress-induced ERK1/2 activation, and rescued HepG2 cells from cell death. The potential impact of TXM-peptides on inhibiting inflammatory pathways associated with high-glucose could be effective in reversing low-grade inflammation. TXM-peptides might also have the potential to improve insulin resistance by protecting from posttranslational modifications like nitrosylation.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Fígado/efeitos dos fármacos , Oligopeptídeos/farmacologia , Peptídeos/farmacologia , Animais , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Fígado/metabolismo , Fígado/patologia , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mimetismo Molecular , Estresse Oxidativo/efeitos dos fármacos , Peptídeos/síntese química , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Rosiglitazona , Transdução de Sinais , Tiazolidinedionas/farmacologia , Tiorredoxinas/química , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Pharmacol Res Perspect ; 4(6): e00278, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28097011

RESUMO

LY2881835 is a selective, potent, and efficacious GPR40 agonist. The objective of the studies described here was to examine the pharmacological properties of LY2881835 in preclinical models of T2D. Significant increases in insulin secretion were detected when LY2881835 was tested in primary islets from WT mice but not in islets from GPR40 KO mice. Furthermore, LY2881835 potentiated glucose stimulated insulin secretion in normal lean mice. Acute administration of LY2881835 lowered glucose during OGTTs in WT mice but not in GPR40 KO mice. These findings demonstrate that LY2881835 induces GPR40-mediated activity ex vivo and in vivo. LY2881835 was administered orally at 10 mg/kg to diet-induced obese (DIO) mice (an early model of T2D due to insulin resistance) for 14 days. Statistically significant reductions in glucose were seen during OGTTs performed on days 1 and 15. When a study was done for 3 weeks in Zucker fa/fa rats, a rat model of insulin resistance, normalization of blood glucose levels equivalent to those seen in lean rats was observed. A similar study was performed in streptozotocin (STZ)-treated DIO mice to explore glucose control in a late model of T2D. In this model, pancreatic insulin content was reduced ~80% due to STZ-treatment plus the mice were insulin resistant due to their high fat diet. Glucose AUCs were significantly reduced during OGTTs done on days 1, 7, and 14 compared to control mice. In conclusion, these results demonstrate that LY2881835 functions as a GPR40-specific insulin secretagogue mediating immediate and durable glucose control in rodent models of early- and late-stage T2D.

11.
Am J Physiol Endocrinol Metab ; 305(10): E1319-26, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24085034

RESUMO

Extracellular ATP released from pancreatic ß-cells acts as a potent insulinotropic agent through activation of P2 purinergic receptors. Ectonucleotidases, a family of membrane-bound nucleotide-metabolizing enzymes, regulate extracellular ATP levels by degrading ATP and related nucleotides. Ectonucleotidase activity affects the relative proportion of ATP and its metabolites, which in turn will impact the level of purinergic receptor stimulation exerted by extracellular ATP. Therefore, we investigated the expression and role of ectonucleotidases in pancreatic ß-cells. Of the ectonucleotidases studied, only ENTPD3 (gene encoding the NTPDase3 enzyme) mRNA was detected at fairly abundant levels in human and mouse pancreatic islets as well as in insulin-secreting MIN6 cells. ARL67156, a selective ectonucleotidase inhibitor, blocked degradation of extracellular ATP that was added to MIN6 cells. The compound also decreased degradation of endogenous ATP released from cells. Measurements of insulin secretion in MIN6 cells as well as in mouse and human pancreatic islets demonstrated that ARL67156 potentiated glucose-dependent insulin secretion. Downregulation of NTPDase3 expression in MIN6 cells with the specific siRNA replicated the effects of ARL67156 on extracellular ATP hydrolysis and insulin secretion. Our results demonstrate that NTPDase3 is the major ectonucleotidase in pancreatic ß-cells in multiple species and that it modulates insulin secretion by controlling activation of purinergic receptors.


Assuntos
Glucose/metabolismo , Células Secretoras de Insulina/enzimologia , Insulina/metabolismo , Pirofosfatases/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Glucose/farmacologia , Humanos , Secreção de Insulina , Células Secretoras de Insulina/química , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pirofosfatases/análise , Pirofosfatases/antagonistas & inibidores , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Distribuição Tecidual
12.
Springerplus ; 2: 421, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24024105

RESUMO

The translation factor eIF5A is the only protein known to contain the amino acid hypusine, which is formed posttranslationally. Hypusinated eIF5A is necessary for cellular proliferation and responses to extracellular stressors, and has been proposed as a target for pharmacologic therapy. Here, we provide the first comprehensive characterization of a novel polyclonal antibody (IU-88) that specifically recognizes the hypusinated eIF5A. IU-88 will be useful for the investigation of eIF5A biology and for the development of assays recognizing hypusinated eIF5A.

13.
J Vis Exp ; (71)2013 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-23329157

RESUMO

Laser microdissection (LMD) is a technique that allows the recovery of selected cells and tissues from minute amounts of parenchyma. The dissected cells can be used for a variety of investigations, such as transcriptomic or proteomic studies, DNA assessment or chromosomal analysis. An especially challenging application of LMD is transcriptome analysis, which, due to the lability of RNA, can be particularly prominent when cells are dissected from tissues that are rich of RNases, such as the pancreas. A microdissection protocol that enables fast identification and collection of target cells is essential in this setting in order to shorten the tissue handling time and, consequently, to ensure RNA preservation. Here we describe a protocol for acquiring human pancreatic beta cells from surgical specimens to be used for transcriptomic studies. Small pieces of pancreas of about 0.5-1 cm(3) were cut from the healthy appearing margins of resected pancreas specimens, embedded in Tissue-Tek O.C.T. Compound, immediately frozen in chilled 2-Methylbutane, and stored at -80 °C until sectioning. Forty serial sections of 10 µm thickness were cut on a cryostat under a -20 °C setting, transferred individually to glass slides, dried inside the cryostat for 1-2 min, and stored at -80 °C. Immediately before the laser microdissection procedure, sections were fixed in ice cold, freshly prepared 70% ethanol for 30 sec, washed by 5-6 dips in ice cold DEPC-treated water, and dehydrated by two one-minute incubations in ice cold 100% ethanol followed by xylene (which is used for tissue dehydration) for 4 min; tissue sections were then air-dried afterwards for 3-5 min. Importantly, all steps, except the incubation in xylene, were performed using ice-cold reagents - a modification over a previously described protocol. utilization of ice cold reagents resulted in a pronounced increase of the intrinsic autofluorescence of beta cells, and facilitated their recognition. For microdissection, four sections were dehydrated each time: two were placed into a foil-wrapped 50 ml tube, to protect the tissue from moisture and bleaching; the remaining two were immediately microdissected. This procedure was performed using a PALM MicroBeam instrument (Zeiss) employing the Auto Laser Pressure Catapulting (AutoLPC) mode. The completion of beta cell/islet dissection from four cryosections required no longer than 40-60 min. Cells were collected into one AdhesiveCap and lysed with 10 µl lysis buffer. Each single RNA specimen for transcriptomic analysis was obtained by combining 10 cell microdissected samples, followed by RNA extraction using the Pico Pure RNA Isolation Kit (Arcturus). This protocol improves the intrinsic autofluorescence of human beta cells, thus facilitating their rapid and accurate recognition and collection. Further improvement of this procedure could enable the dissection of phenotypically different beta cells, with possible implications for better understanding the changes associated with type 2 diabetes.


Assuntos
Ilhotas Pancreáticas/citologia , Microdissecção e Captura a Laser/métodos , Pâncreas/citologia , Humanos , Ilhotas Pancreáticas/cirurgia , Pâncreas/cirurgia
14.
Am J Physiol Endocrinol Metab ; 303(12): E1469-78, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23074242

RESUMO

The GPR119 receptor plays an important role in the secretion of incretin hormones in response to nutrient consumption. We have studied the ability of an array of naturally occurring endocannabinoid-like lipids to activate GPR119 and have identified several lipid receptor agonists. The most potent receptor agonists identified were three N-acylethanolamines: oleoylethanolamine (OEA), palmitoleoylethanolamine, and linoleylethanolamine (LEA), all of which displayed similar potency in activating GPR119. Another lipid, 2-oleoylglycerol (2-OG), also activated GPR119 receptor but with significantly lower potency. Endogenous levels of endocannabinoid-like lipids were measured in intestine in fasted and refed mice. Of the lipid GPR119 agonists studied, the intestinal levels of only OEA, LEA, and 2-OG increased significantly upon refeeding. Intestinal levels of OEA and LEA in the fasted mice were low. In the fed state, OEA levels only moderately increased, whereas LEA levels rose drastically. 2-OG was the most abundant of the three GPR119 agonists in intestine, and its levels were radically elevated in fed mice. Our data suggest that, in lean mice, 2-OG and LEA may serve as physiologically relevant endogenous GPR119 agonists that mediate receptor activation upon nutrient uptake.


Assuntos
Agonistas de Receptores de Canabinoides/metabolismo , Endocanabinoides/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Amidas , Animais , Agonistas de Receptores de Canabinoides/química , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Linhagem Celular , Endocanabinoides/antagonistas & inibidores , Células Endócrinas/efeitos dos fármacos , Células Endócrinas/metabolismo , Etanolaminas/antagonistas & inibidores , Etanolaminas/metabolismo , Jejum/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glicerídeos/antagonistas & inibidores , Glicerídeos/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ácidos Oleicos/antagonistas & inibidores , Ácidos Oleicos/metabolismo , Especificidade de Órgãos , Ácidos Palmíticos/antagonistas & inibidores , Ácidos Palmíticos/metabolismo , Distribuição Aleatória , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes/agonistas , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Magreza/metabolismo , Regulação para Cima
15.
Mol Pharmacol ; 82(6): 1066-73, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22930710

RESUMO

Identifying novel mechanisms to enhance glucagon-like peptide-1 (GLP-1) receptor signaling may enable nascent medicinal chemistry strategies with the aim of developing new orally available therapeutic agents for the treatment of type 2 diabetes mellitus. Therefore, we tested the hypothesis that selectively modulating the low-affinity GLP-1 receptor agonist, oxyntomodulin, would improve the insulin secretory properties of this naturally occurring hormone to provide a rationale for pursuing an unexplored therapeutic approach. Signal transduction and competition binding studies were used to investigate oxyntomodulin activity on the GLP-1 receptor in the presence of the small molecule GLP-1 receptor modulator, 4-(3-benzyloxyphenyl)-2-ethylsulfinyl-6-(trifluoromethyl)pyrimidine (BETP). In vivo, the intravenous glucose tolerance test characterized oxyntomodulin-induced insulin secretion in animals administered the small molecule. BETP increased oxyntomodulin binding affinity for the GLP-1 receptor and enhanced oxyntomodulin-mediated GLP-1 receptor signaling as measured by activation of the α subunit of heterotrimeric G protein and cAMP accumulation. In addition, oxyntomodulin-induced insulin secretion was enhanced in the presence of the compound. BETP was pharmacologically characterized to induce biased signaling by oxyntomodulin. These studies demonstrate that small molecules targeting the GLP-1 receptor can increase binding and receptor activation of the endogenous peptide oxyntomodulin. The biased signaling engendered by BETP suggests that GLP-1 receptor mobilization of cAMP is the critical insulinotropic signaling event. Because of the unique metabolic properties of oxyntomodulin, identifying molecules that enhance its activity should be pursued to assess the efficacy and safety of this novel mechanism.


Assuntos
Hipoglicemiantes/farmacologia , Insulina/metabolismo , Oxintomodulina/farmacologia , Receptores de Glucagon/agonistas , Receptores de Glucagon/metabolismo , Animais , Células CHO , Linhagem Celular , Cricetinae , AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Sinergismo Farmacológico , Proteínas de Ligação ao GTP/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1 , Células HEK293 , Humanos , Transdução de Sinais/efeitos dos fármacos
16.
J Biol Chem ; 285(51): 39943-52, 2010 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20956533

RESUMO

Islet ß cell dysfunction resulting from inflammation, ER stress, and oxidative stress is a key determinant in the progression from insulin resistance to type 2 diabetes mellitus. It was recently shown that the enzyme deoxyhypusine synthase (DHS) promotes early cytokine-induced inflammation in the ß cell. DHS catalyzes the conversion of lysine to hypusine, an amino acid that is unique to the translational elongation factor eIF5A. Here, we sought to determine whether DHS activity contributes to ß cell dysfunction in models of type 2 diabetes in mice and ß cell lines. A 2-week treatment of obese diabetic C57BLKS/J-db/db mice with the DHS inhibitor GC7 resulted in improved glucose tolerance, increased insulin release, and enhanced ß cell mass. Thapsigargin treatment of ß cells in vitro induces a picture of ER stress and apoptosis similar to that seen in db/db mice; in this setting, DHS inhibition led to a block in CHOP (CAAT/enhancer binding protein homologous protein) production despite >30-fold activation of Chop gene transcription. Blockage of CHOP translation resulted in reduction of downstream caspase-3 cleavage and near-complete protection of cells from apoptotic death. DHS inhibition appeared to prevent the cytoplasmic co-localization of eIF5A with the ER, possibly precluding the participation of eIF5A in translational elongation at ER-based ribosomes. We conclude that hypusination by DHS is required for the ongoing production of proteins, particularly CHOP, in response to ER stress in the ß cell.


Assuntos
Apoptose , Diabetes Mellitus Tipo 2/enzimologia , Retículo Endoplasmático/metabolismo , Células Secretoras de Insulina/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Resposta a Proteínas não Dobradas , Animais , Caspase 3/genética , Caspase 3/metabolismo , Sobrevivência Celular/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/patologia , Inibidores Enzimáticos/farmacologia , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Mutantes , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , Elongação Traducional da Cadeia Peptídica/genética , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Tapsigargina/farmacologia , Fator de Transcrição CHOP/biossíntese , Fator de Transcrição CHOP/genética , Fator de Iniciação de Tradução Eucariótico 5A
17.
Diabetes Metab Res Rev ; 26(4): 287-96, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20503261

RESUMO

BACKGROUND: Glucagon-like peptide-1 (GLP-1) receptor agonists are novel agents for type 2 diabetes treatment, offering glucose-dependent insulinotropic effects, reduced glucagonemia and a neutral bodyweight or weight-reducing profile. However, a short half-life (minutes), secondary to rapid inactivation by dipeptidyl peptidase-IV (DPP-IV) and excretion, limits the therapeutic potential of the native GLP-1 hormone. Recently, the GLP-1 receptor agonist exenatide injected subcutaneously twice daily established a novel therapy class. Developing long-acting and efficacious GLP-1 analogues represents a pivotal research goal. We developed a GLP-1 immunoglobulin G (IgG4) Fc fusion protein (LY2189265) with extended pharmacokinetics and activity. METHODS: In vitro and in vivo activity of LY2189265 was characterized in rodent and primate cell systems and animal models. RESULTS: LY2189265 retained full receptor activity in vitro and elicited insulinotropic activity in islets similar to native peptide. Half-life in rats and cynomolgus monkeys was 1.5-2 days, and serum immunoreactivity representing active compound persisted > 6 days. In rats, LY2189265 enhanced insulin responses during graded glucose infusion 24 h after one dose. LY2189265 increased glucose tolerance in diabetic mice after one dose and lowered weight and delayed hyperglycaemia when administered twice weekly for 4 weeks. In monkeys, LY2189265 significantly increased glucose-dependent insulin secretion for up to a week after one dose, retained efficacy when administered subchronically (once weekly for 4 weeks) and was well tolerated. CONCLUSIONS: LY2189265 retains the effects of GLP-1 with increased half-life and efficacy, supporting further evaluation as a once-weekly treatment of type 2 diabetes.


Assuntos
Fragmentos Fc das Imunoglobulinas/farmacologia , Receptores de Glucagon/agonistas , Proteínas Recombinantes de Fusão/farmacologia , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Genes Reporter , Receptor do Peptídeo Semelhante ao Glucagon 1 , Peptídeos Semelhantes ao Glucagon/análogos & derivados , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Incretinas/genética , Incretinas/farmacocinética , Incretinas/farmacologia , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Macaca fascicularis , Proteínas de Membrana/genética , Camundongos , Proteínas Mitocondriais/genética , Engenharia de Proteínas , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacocinética , beta-Lactamases/genética
18.
Endocrinology ; 146(11): 4861-70, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16081632

RESUMO

In isolated rat pancreatic alpha-cells, glucose, arginine, and the sulfonylurea tolbutamide stimulated glucagon release. The effect of glucose was abolished by the KATP-channel opener diazoxide as well as by mannoheptulose and azide, inhibitors of glycolysis and mitochondrial metabolism. Glucose inhibited KATP-channel activity by 30% (P<0.05; n=5) and doubled the free cytoplasmic Ca2+ concentration. In cell-attached recordings, azide opened KATP channels. The N-type Ca2+-channel blocker omega-conotoxin and the Na+-channel blocker tetrodotoxin inhibited glucose-induced glucagon release whereas tetraethylammonium, a blocker of delayed rectifying K+ channels, increased secretion. Glucagon release increased monotonically with increasing K+ concentrations. omega-Conotoxin suppressed glucagon release to 15 mM K+, whereas a combination of omega-conotoxin and an L-type Ca2+-channel inhibitor was required to abrogate secretion in 50 mM K+. Recordings of cell capacitance revealed that glucose increased the exocytotic response evoked by membrane depolarization 3-fold. This correlated with a doubling of glucagon secretion by glucose in intact rat islets exposed to diazoxide and high K+. In whole-cell experiments, exocytosis was stimulated by reducing the cytoplasmic ADP concentration, whereas changes of the ATP concentration in the physiological range had little effect. We conclude that glucose stimulates glucagon release from isolated rat alpha-cells by KATP-channel closure and stimulation of Ca2+ influx through N-type Ca2+ channels. Glucose also stimulated exocytosis by an amplifying mechanism, probably involving changes in adenine nucleotides. The stimulatory action of glucose in isolated alpha-cells contrasts with the suppressive effect of the sugar in intact islets and highlights the primary importance of islet paracrine signaling in the regulation of glucagon release.


Assuntos
Células Secretoras de Glucagon/efeitos dos fármacos , Células Secretoras de Glucagon/metabolismo , Glucagon/metabolismo , Glucose/farmacologia , Nucleotídeos de Adenina/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Diazóxido/farmacologia , Estimulação Elétrica , Inibidores Enzimáticos/farmacologia , Exocitose/efeitos dos fármacos , Técnicas In Vitro , Membranas Intracelulares/metabolismo , Masculino , Concentração Osmolar , Técnicas de Patch-Clamp , Potássio/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/metabolismo , Canais de Potássio/fisiologia , Ratos , Ratos Sprague-Dawley , Azida Sódica/farmacologia , Bloqueadores dos Canais de Sódio/farmacologia , Tapsigargina/farmacologia
19.
Diabetes ; 53 Suppl 3: S181-9, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15561909

RESUMO

Patch-clamp recordings and glucagon release measurements were combined to determine the role of plasma membrane ATP-sensitive K+ channels (KATP channels) in the control of glucagon secretion from mouse pancreatic alpha-cells. In wild-type mouse islets, glucose produced a concentration-dependent (half-maximal inhibitory concentration [IC50]=2.5 mmol/l) reduction of glucagon release. Maximum inhibition (approximately 50%) was attained at glucose concentrations >5 mmol/l. The sulfonylureas tolbutamide (100 micromol/l) and glibenclamide (100 nmol/l) inhibited glucagon secretion to the same extent as a maximally inhibitory concentration of glucose. In mice lacking functional KATP channels (SUR1-/-), glucagon secretion in the absence of glucose was lower than that observed in wild-type islets and both glucose (0-20 mmol/l) and the sulfonylureas failed to inhibit glucagon secretion. Membrane potential recordings revealed that alpha-cells generate action potentials in the absence of glucose. Addition of glucose depolarized the alpha-cell by approximately 7 mV and reduced spike height by 30% Application of tolbutamide likewise depolarized the alpha-cell (approximately 17 mV) and reduced action potential amplitude (43%). Whereas insulin secretion increased monotonically with increasing external K+ concentrations (threshold 25 mmol/l), glucagon secretion was paradoxically suppressed at intermediate concentrations (5.6-15 mmol/l), and stimulation was first detectable at >25 mmol/l K+. In alpha-cells isolated from SUR1-/- mice, both tolbutamide and glucose failed to produce membrane depolarization. These effects correlated with the presence of a small (0.13 nS) sulfonylurea-sensitive conductance in wild-type but not in SUR1-/- alpha-cells. Recordings of the free cytoplasmic Ca2+ concentration ([Ca2+]i) revealed that, whereas glucose lowered [Ca2+]i to the same extent as application of tolbutamide, the Na+ channel blocker tetrodotoxin, or the Ca2+ channel blocker Co2+ in wild-type alpha-cells, the sugar was far less effective on [Ca2+]i in SUR1-/- alpha-cells. We conclude that the KATP channel is involved in the control of glucagon secretion by regulating the membrane potential in the alpha-cell in a way reminiscent of that previously documented in insulin-releasing beta-cells. However, because alpha-cells possess a different complement of voltage-gated ion channels involved in action potential generation than the beta-cell, moderate membrane depolarization in alpha-cells is associated with reduced rather than increased electrical activity and secretion.


Assuntos
Glucagon/metabolismo , Glucose/farmacologia , Canais de Potássio/deficiência , Canais de Potássio/fisiologia , Trifosfato de Adenosina/fisiologia , Animais , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canais de Potássio/genética , Valores de Referência
20.
Diabetes ; 53 Suppl 3: S75-8, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15561926

RESUMO

Liver X receptors (LXRs) alpha and beta, transcription factors of a nuclear hormone receptor family, are expressed in pancreatic islets as well as glucagon-secreting and insulin-secreting cell lines. Culture of pancreatic islets or insulin-secreting MIN6 cells with a LXR specific agonist T0901317 caused an increase in glucose-dependent insulin secretion and islet insulin content. The stimulatory effect of T0901317 on insulin secretion was observed only after >72 h of islet culture with the compound. In MIN6 cells, T0901317 increased protein expression of lipogenic enzymes, fatty acid synthase, and acetyl-CoA carboxylase. LXR activation also produced an increase in glucokinase protein and pyruvate carboxylase (PC) activity levels. The PC inhibitor phenylacetic acid abolished the increase in insulin secretion in cells treated with T0901317. The results suggest that LXRs can control insulin secretion and biosynthesis via regulation of glucose and lipid metabolism in pancreatic beta-cells.


Assuntos
Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Cálcio/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Secreção de Insulina , Cinética , Metabolismo dos Lipídeos , Receptores X do Fígado , Masculino , Receptores Nucleares Órfãos , Reação em Cadeia da Polimerase , Ratos , Ratos Wistar , Receptores Citoplasmáticos e Nucleares/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...